Paralaks adalah perbedaan latar belakang yang tampak ketika sebuah benda yang diam dilihat dari dua tempat yang berbeda. Kita bisa mengamati bagaimana paralaks terjadi dengan cara yang sederhana. Acungkan jari telunjuk pada jarak tertentu (misal 30 cm) di depan mata kita. Kemudian amati jari tersebut dengan satu mata saja secara bergantian antara mata kanan dan mata kiri. Jari kita yang diam akan tampak berpindah tempat karena arah pandang dari mata kanan berbeda dengan mata kiri sehingga terjadi perubahan pemandangan latar belakangnya. “Perpindahan” itulah yang menunjukkan adanya paralaks.
Paralaks juga terjadi pada bintang, setidaknya begitulah yang diharapkan oleh pemerhati dunia astronomi ketika model heliosentris dikemukakan pertama kali oleh Aristarchus (310-230 SM). Dalam model heliosentris itu, Bumi bergerak mengelilingi Matahari dalam orbit yang berbentuk lingkaran. Akibatnya, sebuah bintang akan diamati dari tempat-tempat yang berbeda selama Bumi mengorbit. Dan paralaks akan mencapai nilai maksimum apabila kita mengamati bintang pada dua waktu yang berselang 6 bulan (setengah periode revolusi Bumi). Namun saat itu tidak ada satu orangpun yang dapat mendeteksinya sehingga Bumi dianggap tidak bergerak (karena paralaks dianggap tidak ada). Model heliosentris kemudian ditinggalkan orang dan model geosentrislah yang lebih banyak digunakan untuk menjelaskan perilaku alam semesta.
Paralaks pada bintang baru bisa diamati untuk pertama kalinya pada tahun 1837 oleh Friedrich Bessel, seiring dengan teknologi teleskop untuk astronomi yang berkembang pesat (sejak Galileo menggunakan teleskopnya untuk mengamati benda langit pada tahun 1609). Bintang yang ia amati adalah 61 Cygni (sebuah bintang di rasi Cygnus/angsa) yang memiliki paralaks 0,29″. Ternyata paralaks pada bintang memang ada, namun dengan nilai yang sangat kecil. Hanya keterbatasan instrumenlah yang membuat orang-orang sebelum Bessel tidak mampu mengamatinya. Karena paralaks adalah salah satu bukti untuk model alam semesta heliosentris (yang dipopulerkan kembali oleh Copernicus pada tahun 1543), maka penemuan paralaks ini menjadikan model tersebut semakin kuat kedudukannya dibandingkan dengan model geosentris Ptolemy yang banyak dipakai masyarakat sejak tahun 100 SM.
Setelah paralaks bintang ditemukan, penghitungan jarak bintang pun dimulai. Lihat ilustrasi di bawah ini untuk memberikan gambaran bagaimana paralaks bintang terjadi. Di posisi A, kita melihat bintang X memiliki latar belakang XA. Sedangkan 6 bulan kemudian, yaitu ketika Bumi berada di posisi B, kita melihat bintang X memiliki latar belakang XB. Setengah dari jarak sudut kedua posisi bintang X itulah yang disebut dengan sudut paralaks. Dari sudut inilah kita bisa hitung jarak bintang asalkan kita mengetahui jarak Bumi-Matahari.
Dari geometri segitiga kita ketahui adanya hubungan antara sebuah sudut dan dua buah sisi. Inilah landasan kita dalam menghitung jarak bintang dari sudut paralaks (lihat gambar di bawah). Apabila jarak bintang adalah d, sudut paralaks adalah p, dan jarak Bumi-Matahari adalah 1 SA (Satuan Astronomi = 150 juta kilometer), maka kita dapatkan persamaan sederhana
tan p = 1/d
atau d = 1/p, karena p adalah sudut yang sangat kecil sehingga tan p ~ p.
Jarak d dihitung dalam SA dan sudut p dihitung dalam radian. Apabila kita gunakan detik busur sebagai satuan dari sudut paralaks (p), maka kita akan peroleh d adalah 206265 SA atau 3,09 x 10^13 km. Jarak sebesar ini kemudian didefinisikan sebagai 1 pc (parsec, parsek), yaitu jarak bintang yang mempunyai paralaks 1 detik busur. Pada kenyataannya, paralaks bintang yang paling besar adalah 0,76″ yang dimiliki oleh bintang terdekat dari tata surya, yaitu bintang Proxima Centauri di rasi Centaurus yang berjarak 1,31 pc. Sudut sebesar ini akan sama dengan sebuah tongkat sepanjang 1 meter yang diamati dari jarak 270 kilometer. Sementara bintang 61 Cygni memiliki paralaks 0,29″ dan jarak 1,36 tahun cahaya (1 tahun cahaya = jarak yang ditempuh cahaya dalam waktu satu tahun = 9,5 trilyun kilometer) atau sama dengan 3,45 pc.
Hingga tahun 1980-an, paralaks hanya bisa dideteksi dengan ketelitian 0,01″ atau setara dengan jarak maksimum 100 parsek. Jumlah bintangnya pun hanya ratusan buah. Peluncuran satelit Hipparcos pada tahun 1989 kemudian membawa perubahan. Satelit tersebut mampu mengukur paralaks hingga ketelitian 0,001″, yang berarti mengukur jarak 100.000 bintang hingga 1000 parsek. Sebuah katalog dibuat untuk mengumpulkan data bintang yang diamati oleh satelit Hipparcos ini. Katalog Hipparcos yang diterbitkan di akhir 1997 itu tentunya membawa pengaruh yang sangat besar terhadap semua bidang astronomi yang bergantung pada ketelitian jarak.
Mengukur Jarak Dengan Bintang Cepheid
kita dapat menentukan jarak bintang dengan menghitung paralaksnya. Namun metode paralaks itu hanya dapat digunakan untuk bintang-bintang dekat saja karena teknologi yang kita miliki belum dapat menghitung paralaks dengan ketelitian tinggi. Jarak terjauh yang bisa diukur dengan metode paralaks hanya beberapa kiloparsek saja. Lalu bagaimana kita menghitung jarak bintang-bintang yang lebih jauh? Atau bahkan menghitung jarak galaksi-galaksi yang jauh? Salah satu caranya adalah dengan menggunakan hubungan periode-luminositas bintang variabel Cepheid.
Sejarah metode penghitungan jarak ini berawal dari sebuah penelitian tentang hasil pengamatan terhadap bintang variabel (bintang yang kecerlangannya berubah-ubah) yang ada di galaksi Awan Magellan Besar dan Awan Magellan Kecil (LMC dan SMC). Saat itu Henrietta Leavitt, astronom wanita asal Amerika Serikat, membuat katalog yang berisi 1777 bintang variabel dari penelitian tersebut. Dari katalog yang ia buat diketahui bahwa terdapat beberapa bintang yang menunjukkan hubungan antara kecerlangan dengan periode variabilitas. Bintang yang memiliki kecerlangan lebih besar ternyata memiliki periode varibilitas yang lebih lama dan begitu pula sebaliknya. Bentuk kurva cahaya bintang variabel jenis ini juga unik dan serupa, yang ditandai dengan naiknya kecerlangan bintang secara cepat dan kemudian turun secara perlahan.
Bentuk kurva cahaya seperti itu ternyata sama dengan kurva cahaya bintang delta Cephei yang diamati pada tahun 1784. Karena itulah bintang variabel jenis ini diberi nama bintang variabel Cepheid. Penamaan ini tidak berubah walaupun belakangan ditemukan juga kurva cahaya yang sama dari bintang Eta Aquilae yang diamati beberapa bulan sebelum pengamatan delta Cephei.
Hubungan sederhana antara periode dan luminositas bintang variabel Cepheid ini bisa digunakan dalam menentukan jarak karena astronom sudah mengetahui adanya hubungan antara luminositas dengan kecerlangan/magnitudo semu bintang yang bergantung pada jarak. Dari pengamatan bintang Cepheid kita bisa dapatkan periode variabilitas dan magnitudonya. Kemudian periode yang kita peroleh bisa digunakan untuk menghitung luminositas/magnitudo mutlak bintangnya dengan formula M = -2,81 log(P)-1,43. Karena luminositas/magnitudo mutlak dan magnitudo semu berhubungan erat dalam formula Pogson (modulus jarak), maka pada akhirnya kita bisa dapatkan nilai jarak untuk bintang tersebut.
Kunci penentu agar metode ini dapat digunakan adalah harus ada setidaknya satu bintang variabel Cepheid yang jaraknya bisa ditentukan dengan cara lain, misalnya dari metode paralaks trigonometri . Jarak bintang akan digunakan untuk menghitung luminositasnya dan selanjutnya bisa digunakan sebagai pembanding untuk semua bintang Cepheid. Oleh karena itu, astronom sampai sekarang masih terus berusaha agar proses kalibrasi ini dilakukan dengan ketelitian yang tinggi supaya metode penentuan jarak ini memberikan hasil dengan akurasi tinggi pula.
Menghitung jarak bintang variabel Cepheid menjadi sangat penting karena kita jadi bisa menentukan jarak gugus bintang atau galaksi yang jauh asalkan di situ ada bintang Cepheid yang masih bisa kita deteksi kurva cahayanya. Di sinilah keunggulan metode ini dibandingkan dengan paralaks, yang hanya bisa digunakan untuk bintang-bintang dekat saja.
Lalu apa sebenarnya yang terjadi pada bintang Cepheid? Bintang ini mengalami perubahan luminositas karena radiusnya berubah membesar dan mengecil. Proses ini terjadi pada salah satu tahapan evolusi bintang, yaitu ketika sebuah bintang berada pada fase raksasa atau maharaksasa merah. Jadi dengan mempelajari bintang variabel Cepheid kita bisa menghitung jarak sekaligus mempelajari salah satu tahapan evolusi bintang.
0 comments:
Post a Comment